
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 278 (2004) 949–974

Computation of normal forms for high dimensional non-linear
systems and application to non-planar non-linear oscillations

of a cantilever beam

Wei Zhanga,*, Fengxia Wangb, Jean W. Zuc

aCollege of Mechanical Engineering, Beijing University of Technology, Beijing 100022, China
bSchool of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA

cDepartment of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road,

Toronto, Ont., Canada M5S 3G8

Received 11 June 2003; accepted 22 October 2003

Abstract

A new and efficient computation of the normal forms is developed in this paper for high dimensional
non-linear systems, and the computational method is applied to non-planar non-linear oscillations of a
cantilever beam. The method developed here has the advantage of directly calculating the coefficients of the
normal forms and the associated near identity non-linear transformations for three different cases, that is,
(1) the case of two pairs of pure imaginary eigenvalues; (2) the case of one non-semisimple double zero and
a pair of pure imaginary eigenvalues; and (3) the case of two non-semisimple double zero eigenvalues. The
final partial differential equations of various resonant cases appear in a canonical form whose solutions can
be conveniently obtained using polynomial equations. With the aid of the Maple software, a symbolic
program for computing the normal forms of high dimensional non-linear systems is given. Comparing the
method developed here with other methods of computing the normal forms, it is understood that we may,
respectively, obtain the normal forms, the coefficients of the normal forms and the associated near identity
non-linear transformations for three resonant cases by using a same main Maple symbolic program.
Moreover, the method is easy to apply to engineering problems. The normal forms of the averaged
equations and their coefficients for non-planar non-linear oscillations of the cantilever beam under
combined parametric and forcing excitations are calculated for two resonant cases.
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Normal form theory is one of the basic methods for the study of non-linear dynamics such as
the homoclinic and heteroclinic bifurcations. The theory of normal form is concerned with
constructing a series of near identity non-linear transformations that make the non-linear systems
as simple as possible. With the aid of normal form theory, we may obtain a set of simpler
differential equations, which is topologically equivalent to the original systems. Being ‘‘simpler’’
means that some non-linear terms may be eliminated from the original differential equations. The
main attention of the paper is focused on developing a new and efficient computation of the
normal forms for higher dimensional non-linear systems based on the adjoint operator method
[1]. The method is then applied to obtain the normal forms of the averaged equations for non-
planar non-linear oscillations of a parametrically and externally exited cantilever beam.
In engineering problems and applications of non-linear dynamics, research for degenerate

bifurcations of codimension 2, 3 and 4 is connected with research for the normal forms in higher
dimensional non-linear systems. To study degenerate bifurcations of higher codimension and the
Silnikov-type homoclinic or heteroclinic bifurcations in a practical non-linear system, the method
of multiple scales or the averaging method can be utilized first to obtain the averaged equations of
non-autonomous non-linear systems. Then, normal form theory and universal unfolding are used
to simplify the aforementioned averaged equations. Therefore, we need to compute the normal
forms of high dimensional averaged equations and to find the formulas of the explicit relationship
between the coefficients of the normal forms and those of the averaged equations. Furthermore,
we need to determine the universal unfolding or unfolding of the system and to find the relation
between unfolding parameters and those of the original system. Finally, we use the global
perturbation method to study the bifurcation characteristics of the unfolding and give the
Silnikov-type homoclinic bifurcations or heteroclinic bifurcations. For a more complicated
practical non-linear system, it is perhaps not easy to get the universal unfolding of the system. In
this case, we may obtain an unfolding instead of the universal unfolding to study the bifurcation
characteristics of the system, and also some interesting results in spite of possible incompletion of
the results.
In the past three decades, the researchers have obtained great achievements in the study of the

normal form. Up to now the five basic methods for the computation of the normal form have been
proposed: the adjoint operator method [1], the matrix representation method [2–4], the
representation theory of Lie algebra slð2;RÞ [5], the method of more Lie brackets [6–8], and the
method of the symbolic computation [9,10]. Recent research is focused on the computation of
the coefficients of the normal form and its further reduction. Dangelmayr and Guckenheimer [11]
used the Macsyma to compute the normal forms and studied the degenerate bifurcations of
codimension 3 and 4 for non-linear dynamical systems with four parameters in a planar vector
field. Dumortier and Fiddelaers [12] used the Macsyma and Mathematica programs to compute
the normal forms of higher order and analyzed the degenerate bifurcations of codimension 3 and
4 in a planar vector field. Combining the center manifold theory and the normal form theory into
one step simultaneously, Yu et al. [9,10] obtained the formulae to compute the normal forms of
the non-linear systems which have four-dimensional center manifold. They developed a symbolic
computation by using the Maple program to compute explicit normal forms and associated near
identity non-linear transformations based on the coefficients of the original differential equations.
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Zhang [13] utilized the matrix representation method to compute the normal forms of higher
order and studied the degenerate bifurcations of codimension 3 for a non-linear dynamical system
with Z2-symmetry. With the application of the adjoint operator method, Zhang and Chen [14]
calculated higher order normal forms of non-linear dynamical systems with Z2-asymmetry.
Subsequently, Zhang and Yu [15] employed high order normal form to investigate codimension-3
degenerate bifurcations of a parametrically and externally excited mechanical system. Sri
Namachchivaya et al. [16] computed the normal form for a generalized Hopf bifurcation with
non-semisimple 1:1 resonance. Moreover, Yu [17] used a perturbation technique and computer
algebra to compute the normal form of non-linear dynamical systems with two pairs of pure
imaginary eigenvalues and analyzed double Hopf bifurcations.
Different from the aforementioned work which is focused on the computation of the normal

form, the recent attempt has been made on the simplification of the normal forms. Baider and
Sanders [18] made further reduction to the simplified Takens–Bogdanov normal form. New linear
grading functions were introduced by Kokubu et al. [19] to study further reduction of the normal
forms. Based on their work, Wang et al. [20] solved a special case of the remaining problem in the
paper of Baider et al. [18]. Li et al. [21] employed the method of more Lie brackets to investigate
the general form of the simplest normal form of Bogdanov–Takens singularities.
In this paper, a new and efficient computational method is developed for high dimensional non-

linear systems for the first time and the general computing formula is derived. This new method is
based on the adjoint operator method, the use of which leads directly to the explicit expressions of
coefficients of the normal form. Compared with few existing methods to directly compute
coefficients of the normal forms, the advantage of this newly developed method is that it is easy to
apply to engineering applications, and the final partial differential equations of various resonant
cases appear in a canonical form which is convenient to solve using the same main Maple
symbolic programs. Based on the Maple symbolic programs developed here, the new method is
applied to non-planar non-linear oscillations of a cantilever beam under combined parametric and
forcing excitations in two resonant cases to obtain the normal forms of the averaged equations.
For these two resonant cases, there, respectively, exist two pairs of pure imaginary eigenvalues as
well as one non-semisimple double zero and a pair of pure imaginary eigenvalues in the averaged
equations.

2. Normal form of non-linear system and adjoint operator method

Consider the non-linear system described by

’x ¼ X ðxÞ ¼ Ax þ f ðxÞ; xARn; ð1aÞ

or

’x ¼ X ðxÞ ¼ Ax þ f 2ðxÞ þ f 3ðxÞ þ?þ f kðxÞ; ð1bÞ

where x ¼ ½x1;x2;y;xn�T; A is a n � n Jordan matrix, f ðxÞ ¼ ðf 2ðxÞ; f 3ðxÞ;y; f kðxÞÞT is a vector
in which the terms are formal power series for each degreeX2; X ð0Þ ¼ 0: We also write f ðxÞ ¼P

kX2 f kðxÞ; where f kðxÞ is a vector of homogeneous polynomials of k-degree, and f kðxÞAHk
n

which represents the linear space of k-degree homogeneous polynomials in n variables.
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We use a series of near identity non-linear transformations to reduce non-linear system (1) to a
simpler form, that is, the normal form. Assuming that a near identity non-linear transformation is
of the form

x ¼ y þ PkðyÞ; PkðyÞAHk
n ; ð2Þ

where

PkðxÞ ¼ ðPk
1ðxÞ;P

k
2ðxÞ;y;Pk

nðxÞÞ
T: ð3Þ

Then, we have

’x ¼ ðI þ DPkðyÞÞ ’y; ð4Þ

and

ðI þ DPkðyÞÞ�1 ¼ I � DPkðyÞ þ Oðjjyjj2k�2Þ; ð5Þ

where DPkðyÞ is the n � n Jacobian matrix

DPkðyÞ ¼

@Pk
1

@y1

@P
y
1

@y2
?

@Pk
1

@yn

@Pk
2

@y1

@Pk
2

@y2
?

@Pk
2

@yn

^ ^ ^ ^

@Pk
n

@y1

@Pk
n

@y2
?

@Pk
n

@yn

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ð6Þ

Substituting Eqs. (2), (4) and (5) into Eq. (1) yields

’y ¼ Ay þ f 2ðyÞ þ?þ f k�1ðyÞ þ f f kðyÞ � ½DPkðyÞAy � APkðyÞ�g þ Oðjjyjjkþ1Þ; ð7Þ

where

f kðy þ PkðyÞÞ ¼ f kðyÞ þ Oðjjyjjkþ1Þ: ð8Þ

We define a linear operator as

adk
A : Hk

n-Hk
n ;

adk
APkðyÞ ¼ DPkðyÞAy � APkðyÞ ¼ ½Ay;PkðyÞ�; PkðyÞAHk

n ; ð9Þ

where ½�; �� is the Lie bracket, and the adk
A is called a homological operator. Let Rk be the image of

adk
A; that is, Rk ¼ Im adk

A; and Ck be any complementary subspaces of Rk in Hk
n ; Hk

n ¼ Rk"Ck:
We assume f kðyÞ ¼ hkðyÞ þ gkðyÞ; where gkðyÞACk; hkðyÞARk; and we may choose PkðyÞ such that

adk
APkðyÞ ¼ hkðyÞ ¼ f kðyÞ � gkðyÞ: ð10Þ

Eq. (10) is called a homological equation. Using a series of near identity non-linear
transformations, then, Eq. (1) can be transformed after replacing y by x as

’x ¼ Ax þ g2ðxÞ þ?þ gNðxÞ; ð11Þ

where gkðyÞACk for k ¼ 2;y;N:
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We refer to Eq. (11) as the N-order normal form of non-linear system (1). The goal to
compute its normal form is to choose a series of near identity non-linear transformations
PðxÞ ¼ ðP2ðxÞ;P3ðxÞ;y;PNðxÞÞT such that non-linear system (1) will be in the form as simple as
possible.
In the following, we give the procedure of computing the normal form with the aid of adjoint

operator method [1]. From the above analysis, it is known that the key of computing the normal
forms is to find Ck and a basis of Ck for k ¼ 2;y;N: The following analysis shows how to find a
vertical complementary subspace of Im adk

A in Hk
n :

Assume that V is a finite dimensional inner product space, L is a linear operator in V and L� is
the adjoint operator of L: Then, we have

ð1Þ Ker L� ¼ ðIm LÞ>; ð2Þ V ¼ Im L"Ker L�; ð12Þ

where Ker L� is the null space of L�: The proof of the above result is given in Ref. [22].
It is known that if we may find the adjoint operator ðadk

AÞ
� of the linear operator adk

A;
Kerðadk

AÞ
� is a vertical complementary subspace of Im adk

A in Hk
n : Based on the analysis given in

Refs. [1,4], it is known that the operator adk
A� is the adjoint operator of adk

A; that is, adk
A� ¼

ðadk
AÞ
�; where A� ¼ %AT is the adjoint transposed matrix of A: Then, there is

adk
A�PkðxÞ ¼ DPkðxÞA�x � A�PkðxÞ: ð13Þ

Therefore, it is found that Ker adk
A� is a vertical complementary subspace of Im adk

A

in Hk
n ; i.e., Hk

n ¼ Im adk
A"Ker adk

A� : It is clear that Ker adk
A� is a subspace which consists

of all k order vector polynomial solutions in n variables for the linear partial differential
equation

adk
A�PkðxÞ ¼ 0; PkðxÞAHk

n ; ð14Þ

or

DPkðxÞA�x � A�PkðxÞ ¼ 0: ð15Þ

Note that the differential equation (15) has the same form for different k; and therefore the
computation of any order normal forms of non-linear systems will be identical.

3. Computation of normal forms and their coefficients

In engineering problems, up to now, we can only investigate the global bifurcations and
chaotic dynamics of four-dimensional non-linear systems with the cubic terms by using
the analytical approaches, for example, the global perturbation approach developed by
Kovacic and Wiggins [23], and the energy-phase method given by Haller and Wiggins [24].
For higher-dimensional non-linear systems, it is very difficult to analytically treat the
global bifurcations and chaotic dynamics. Therefore, let us focus on the four-dimensional
generalized averaged systems with Z2"Z2-symmetry, which only involve 3 order non-linear terms
ðk ¼ 3Þ

’x ¼ X ðxÞ ¼ Ax þ f 3ðxÞ; xAR4; ð16Þ
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where f 3ðxÞAH3
4 ;

f 3ðxÞ ¼ ðf 3
1 ðxÞ; f

3
2 ðxÞ; f

3
3 ðxÞ; f

3
4 ðxÞÞ

T

¼
X
jmj¼3

am1m2m3m4
xm1

1 xm2

2 xm3

3 xm4

4 ;
X
jmj¼3

bm1m2m3m4
xm1

1 xm2

2 xm3

3 xm4

4 ;

 

X
jmj¼3

cm1m2m3m4
xm1

1 xm2

2 xm3

3 xm4

4 ;
X
jmj¼3

dm1m2m3m4
xm1

1 xm2

2 xm3

3 xm4

4

!T

ð17Þ

and jmj ¼ m1 þ m2 þ m3 þ m4:
In this case, Eq. (15) can become as

DP3ðxÞA�x � A�P3ðxÞ ¼ 0: ð18Þ

When the Jordan matrix A and the non-linear terms f 3ðxÞ in generalized averaged equations (16)
are known, we are able to obtain, based on Eq. (18), the normal forms of system (16) and the
coefficients of the normal forms associated with the coefficients of Eq. (16).
Without loss of generality, the three cases of the Jordan matrix A in four-dimensional non-

linear systems are considered as follows:

(1) The Jordan matrix A has two pairs of pure imaginary eigenvalues;
(2) The Jordan matrix A has one non-semisimple double zero and a pair of pure imaginary

eigenvalues;
(3) The Jordan matrix A has two non-semisimple double zero eigenvalues.

The forms of the Jordan matrix A in the aforementioned three cases can be represented as

A ¼

0 �o1 0 0

o1 0 0 0

0 0 0 �o2

0 0 o2 0

2
6664

3
7775 ¼

J1 0

0 J2

" #
; ð19Þ

A ¼

0 1 0 0

0 0 0 0

0 0 0 �o

0 0 o 0

2
6664

3
7775 ¼

J1 0

0 J2

" #
ð20Þ

and

A ¼

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

2
6664

3
7775 ¼

J1 0

0 J2

" #
: ð21Þ

Knowing the form of the Jordan matrix A; we may obtain a set of linear partial differential
equations from Eq. (18) and find 3 order polynomial solutions in 4 variables. To achieve this,
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express DP3 as

DP3 ¼
@P3

@x

� �
4�4

¼

@P3
1

@x1

@P3
1

@x2

@P3
1

@x3

@P3
1

@x4

^ ^ ^ ^

@P3
4

@x1

@P3
4

@x2

@P3
4

@x3

@P3
4

@x4

2
666664

3
777775: ð22Þ

Considering the first case, we have

A� ¼
J�1 0

0 J�2

" #
¼

0 o1 0 0

�o1 0 0 0

0 0 0 o2

0 0 �o2 0

2
6664

3
7775: ð23Þ

Substituting Eqs. (22) and (23) into Eq. (18) yields

@P3
1

@x1

@P3
1

@x2

@P3
1

@x3

@P3
1

@x4

^ ^ ^ ^

@P3
4

@x1

@P3
4

@x2

@P3
4

@x3

@P3
4

@x4

2
666664

3
777775

J�1 0

0 J�2

" # x1

x2

x3

x4

2
6664

3
7775�

J�1 0

0 J�2

" # P3
1

P3
2

P3
3

P3
4

2
6664

3
7775 ¼ 0: ð24Þ

Simplifying the above equation, we obtain

o1x2
@P3

1

@x1
� o1x1

@P3
1

@x2
þ o2x4

@P3
1

@x3
� o2x3

@P3
1

@x4
� o1P

3
2 ¼ 0; ð25aÞ

o1x2
@P3

2

@x1
� o1x1

@P3
2

@x2
þ o2x4

@P3
2

@x3
� o2x3

@P3
2

@x4
þ o1P

3
1 ¼ 0; ð25bÞ

o1x2
@P3

3

@x1
� o1x1

@P3
3

@x2
þ o2x4

@P3
3

@x3
� o2x3

@P3
3

@x4
� o2P

3
4 ¼ 0; ð25cÞ

o1x2
@P3

4

@x1
� o1x1

@P3
4

@x2
þ o2x4

@P3
4

@x3
� o2x3

@P3
4

@x4
þ o2P

3
3 ¼ 0: ð25dÞ

For the second case, we have

A� ¼
J�1 0

0 J�2

" #
¼

0 0 0 0

1 0 0 0

0 0 0 o

0 0 �o 0

2
6664

3
7775: ð26Þ

Substituting Eqs. (22) and (26) into Eq. (18) and simplifying the equation obtained here yields

x1
@P3

1

@x2
þ ox4

@P3
1

@x3
� ox3

@P3
1

@x4
¼ 0; ð27aÞ
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x1
@P3

2

@x2
þ ox4

@P3
2

@x3
� ox3

@P3
2

@x4
� P3

1 ¼ 0; ð27bÞ

x1
@P3

3

@x2
þ ox4

@P3
3

@x3
� ox3

@P3
3

@x4
� oP3

4 ¼ 0; ð27cÞ

x1
@P3

4

@x2
þ ox4

@P3
4

@x3
� ox3

@P3
4

@x4
þ oP3

3 ¼ 0: ð27dÞ

Finally, the third case leads to

A� ¼
J�1 0

0 J�2

" #
¼

0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0

2
6664

3
7775: ð28Þ

Similarly, we obtain

x1
@P3

1

@x2
þ x3

@P3
1

@x4
¼ 0; ð29aÞ

x1
@P3

2

@x2
þ x3

@P3
2

@x4
� P3

1 ¼ 0; ð29bÞ

x1
@P3

3

@x2
þ x3

@P3
3

@x4
¼ 0; ð29cÞ

x1
@P3

4

@x2
þ x3

@P3
4

@x4
� P3

3 ¼ 0: ð29dÞ

To compute 3 order normal forms of Eq. (16), we only need to find all 3 order polynomial
solutions of the sets of partial differential Eqs. (25), (27) and (29). In Ref. [1], the characteristic
system of the set of partial differential equations and the independent first integrals of the
characteristic system were used to find the polynomial solutions of the set of partial differential
equations. In this paper, a different method is developed to obtain all 3 order polynomial
solutions of the sets of partial differential equations. To achieve this, we introduce 20 monomials
in the linear space H3

4 as follows:

X ¼ ½x3
1; x

3
2;x

3
3; x

3
4;x

2
1x2;x

2
1x3; x

2
1x4;x

2
2x1;x

2
2x3; x

2
2x4;x

2
3x1;x

2
3x2;

x2
3x4; x

2
4x1; x

2
4x2;x

2
4x3; x1x2x3; x1x2x4;x1x3x4;x2x3x4� ¼ fxm1

1 xm2

2 xm3

3 xm4

4 g: ð30Þ

It is clear that any 3 degree polynomials in H3
4 can be represented by the combination of these

monomials in Eq. (30).
Utilizing Eq. (30), non-linear term f 3ðxÞ in Eq. (16) can be rewritten as

f 3ðxÞ ¼ ½C4�20�XT; ð31Þ

where the matrix ½C4�20� is determined by generalized averaged Eq. (16), XT is the transposed
matrix of X :
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In addition, based on Eq. (3), let

P3 ¼ ½P3
1;P

3
2;P

3
3;P

3
4�
T

¼
X
jmj¼3

d1mxm;
X
jmj¼3

d2mxm;
X
jmj¼3

d3mxm;
X
jmj¼3

d4mxm

" #T
¼ ½D4�20�XT; ð32Þ

where m ¼ m1m2m3m4; xm ¼ xm1

1 xm2

2 xm3

3 xm4

4 ; and ½D4�20� represents a matrix which involves 80
unknown coefficients.
Based on the different A given in Eqs. (19)–(21), substituting Eq. (32) into Eqs. (25), (27) and

(29) respectively, we may obtain the three sets of 3-degree non-linear algebraic equations with
respect to xAR4:
(1) For the case of two pairs of pure imaginary eigenvalues, we have

o1x2
@

@x1
� o1x1

@

@x2
þ o2x4

@

@x3
� o2x3

@

@x4

� �X
jmj¼3

d1mxm � o1

X
jmj¼3

d2mxm ¼ 0; ð33aÞ

o1x2
@

@x1
� o1x1

@

@x2
þ o2x4

@

@x3
� o2x3

@

@x4

� �X
jmj¼3

d2mxm þ o1

X
jmj¼3

d1mxm ¼ 0; ð33bÞ

o1x2
@

@x1
� o1x1

@

@x2
þ o2x4

@

@x3
� o2x3

@

@x4

� �X
jmj¼3

d3mxm � o2

X
jmj¼3

d4mxm ¼ 0; ð33cÞ

o1x2
@

@x1
� o1x1

@

@x2
þ o2x4

@

@x3
� o2x3

@

@x4

� �X
jmj¼3

d4mxm þ o2

X
jmj¼3

d3mxm ¼ 0: ð33dÞ

(2) For the case of one non-semisimple double zero and a pair of pure imaginary eigenvalues,
we obtain

x1
@

@x2
þ ox4

@

@x3
� ox3

@

@x4

� �X
jmj¼3

d1mxm ¼ 0; ð34aÞ

x1
@

@x2
þ ox4

@

@x3
� ox3

@

@x4

� �X
jmj¼3

d2mxm �
X
jmj¼3

d1mxm ¼ 0; ð34bÞ

x1
@

@x2
þ ox4

@

@x3
� ox3

@

@x4

� �X
jmj¼3

d3mxm � o
X
jmj¼3

d4mxm ¼ 0; ð34cÞ

x1
@

@x2
þ ox4

@

@x3
� ox3

@

@x4

� �X
jmj¼3

d4mxm þ o
X
jmj¼3

d3mxm ¼ 0: ð34dÞ

(3) For the case of two non-semisimple double zero eigenvalues, we have

x1
@

@x2
þ x3

@

@x4

� �X
jmj¼3

d1mxm ¼ 0; ð35aÞ
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x1
@

@x2
þ x3

@

@x4

� �X
jmj¼3

d2mxm �
X
jmj¼3

d1mxm ¼ 0; ð35bÞ

x1
@

@x2
þ x3

@

@x4

� �X
jmj¼3

d3mxm ¼ 0; ð35cÞ

x1
@

@x2
þ x3

@

@x4

� �X
jmj¼3

d4mxm �
X
jmj¼3

d3mxm ¼ 0: ð35dÞ

Balancing the coefficients of xm1

1 xm2

2 xm3

3 xm4

4 ð
P4

i mi ¼ 3Þ on the left side and the right side of
Eqs. (33)–(35), the three sets of linear algebraic equations, each of which respectively involves 80
equations, can be obtained. Solving each set of 80-dimensional linear algebraic equations, we are
able to present three bases of Ker adk

A� in H3
4 and three matrices ½ %D4�20�j ðj ¼ 1; 2; 3Þ in which all

coefficients of matrices ½D4�20� are determined. Therefore, we have

g3ðxÞ ¼ ½ %D4�20�jX
T; j ¼ 1; 2; 3: ð36Þ

Next, substituting Eq. (32) into Eq. (9) ðk ¼ 3; n ¼ 4Þ yields the following three equations.
(1) For the case of two pairs of pure imaginary eigenvalues, we obtain

ad3
AP3ðxÞ ¼DP3ðxÞAx � AP3ðxÞ

¼

�o1x2
@

@x1
þ o1x1

@

@x2
� o2x4

@

@x3
þ o2x3

@

@x4

� �P
jmj¼3 d1mxm þ o1

P
jmj¼3 d2mxm

�o1x2
@

@x1
þ o1x1

@

@x2
� o2x4

@

@x3
þ o2x3

@

@x4

� �P
jmj¼3 d2mxm � o1

P
jmj¼3 d1mxm

�o1x2
@

@x1
þ o1x1

@

@x2
� o2x4

@

@x3
þ o2x3

@

@x4

� �P
jmj¼3 d3mxm þ o2

P
jmj¼3 d4mxm

�o1x2
@

@x1
þ o1x1

@

@x2
� o2x4

@

@x3
þ o2x3

@

@x4

� �P
jmj¼3 d4mxm � o2

P
jmj¼3 d3mxm

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
:

ð37Þ

(2) For the case of one non-semisimple double zero and a pair of pure imaginary eigenvalues,
we have

ad3
AP3ðxÞ ¼DP3ðxÞAx � AP3ðxÞ

¼

x2
@

@x1
� ox4

@

@x3
þ ox3

@

@x4

� �P
jmj¼3 d1mxm � o1

P
jmj¼3 d2mxm

x2
@

@x1
� ox4

@

@x3
þ ox3

@

@x4

� �P
jmj¼3 d2mxm

x2
@

@x1
� ox4

@

@x3
þ ox3

@

@x4

� �P
jmj¼3 d3mxm þ o

P
jmj¼3 d4mxm

x2
@

@x1
� ox4

@

@x3
þ ox3

@

@x4

� �P
jmj¼3 d4mxm � o

P
jmj¼3 d3mxm

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: ð38Þ
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(3) For the case of two non-semisimple double zero eigenvalues, we obtain

ad3
AP3ðxÞ ¼DP3ðxÞAx � AP3ðxÞ

¼

x2
@

@x1
þ x4

@

@x3

� �P
jmj¼3 d1mxm �

P
jmj¼3 d2mxm

x2
@

@x1
þ x4

@

@x3

� �P
jmj¼3 d2mxm

x2
@

@x1
þ x4

@

@x3

� �P
jmj¼3 d3mxm �

P
jmj¼3 d4mxm

x2
@

@x1
þ x4

@

@x3

� �P
jmj¼3 d4mxm

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: ð39Þ

Simplifying Eqs. (37)–(39) leads to

h3ðxÞ ¼ ½ %K4�20�jX
T; j ¼ 1; 2; 3: ð40Þ

Finally, substitution of Eqs. (31), (36) and (40) into Eq. (10) ðk ¼ 3; n ¼ 4Þ results in

½C4�20�XT ¼ ½ %D4�20�jX
T þ ½ %K4�20�jX

T; j ¼ 1; 2; 3: ð41Þ

Balancing the coefficients of xm1

1 xm2

2 xm3

3 xm4

4 ð
P4

i mi ¼ 3Þ on the left side and the right hand side of
Eq. (41), a set of linear algebra equations, which involves 80 equations, can be obtained as

½C4�20� ¼ ½ %D4�20�j þ ½ %K4�20�j; j ¼ 1; 2; 3: ð42Þ

Solving Eq. (42), we may obtain the coefficients of the normal forms associated with the
coefficients of the generalized averaged Eqs. (16) and near identity non-linear transformation.
The deriving procedure and formulae given in the aforementioned analysis can be directly

utilized to obtain Maple symbolic computation program. The outline of the program is given as
follows.
1. Based on the original equation, create the matrix ½C4�20�:
2. Give near identity non-linear transformation P3ðxÞ ¼ ½D4�20�XT:
3. Substitute A�; P3ðxÞ and DP3ðxÞ into Eq. (18). Balance the coefficients of

xm1

1 xm2

2 xm3

3 xm4

4 ð
P4

i mi ¼ 3Þ and get the matrices ½ %D4�20�j ðj ¼ 1; 2; 3Þ:
4. Obtain g3ðxÞ ¼ ½ %D4�20�jX

T; j ¼ 1; 2; 3:
5. Substitute A; P3ðxÞ and DP3ðxÞ into Eq. (9) and get h3ðxÞ ¼ ½ %K4�20�jX

T; j ¼ 1; 2; 3:
6. Balance the coefficients of xm1

1 xm2

2 xm3

3 xm4

4 ð
P4

i mi ¼ 3Þ on the left side and the right hand side
of Eq. (41) and solve Eq. (42).
The Maple source codes for computing the normal forms by applying the above procedures are

presented in Appendix A.
In the original work on the adjoint method, Elphick et al. [1] did not give the explicit formulae

of the relationship between the coefficients of the original system and those of the normal form.
They did not also demonstrate how to compute the coefficients of the normal form in terms of the
coefficients of the original system. Sri Namachchivaya et al. [16] obtained the 4 leading complex
coefficients of the normal form by using the coefficients of the original system. They did not give
all coefficients in the normal form. Comparing the method developed here with other methods
given in Refs. [9,17,25], it is observed that we may, respectively, obtain the normal forms, the
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coefficients of the normal forms and the associated near identity non-linear transformations for
three resonant cases by using the same main Maple symbolic program. Therefore, it is more
convenient to utilize the approach developed here to compute the normal form of the averaged
equations for different resonant cases. It is also found that in Refs. [9,17] the researchers only
investigated the cases in which the center manifold is four-dimensional. In addition, Leung and
Zhang only computed the normal forms of non-linear systems with two-, three- and four-
dimensional center manifolds by using the Mathematica language in paper [25]. They did not
calculate the normal form on center manifold of dimensional number > 4:
In the next section, the two examples will be employed for non-planar non-linear oscillations of

a cantilever beam to demonstrate the procedure of computing the normal forms with the aid of
the method developed above and the Maple program.

4. Application to non-planar motions of a cantilever beam

In order to conveniently investigate the global bifurcations and chaotic dynamics in non-planar
non-linear oscillations of a cantilever beam under combined parametric and forcing excitations,
we need to reduce the averaged equations for non-planar non-linear oscillations of the cantilever
beam to a simpler normal form.
We consider a cantilever beam with length L; and mass m per unit length subjected to a

harmonic axial excitation at free end. Assume that the beam considered here is the Euler–
Bernoulli beam. A Cartesian co-ordinate system, Oxyz, is adopted which is located in the
symmetric plane of the cantilever beam. The s denotes the curve co-ordinate along the elastic axis
before deformation. x; Z and B are the principal axes of the cross-section for the cantilever beam at
position s: The symbols vðs; tÞ and wðs; tÞ denote the displacements of a point in the middle line of
the cantilever beam in the y and z directions, respectively. The harmonic axial excitation may be
expressed in the form 2F1 cosO1t: The transverse excitations in the y and z directions are
represented in the forms 2F2ðsÞ cosO2t and 2F3ðsÞ cosO2t; respectively. The non-dimensional
governing equations of non-planar non-linear motion for the cantilever beam under combined
parametric and forcing excitations are of the following form [26]:

.v þ c’v þ byviv þ F1 cosðO1tÞv00 ¼ ð1� byÞ w00
Z s

1

v00w00 ds � w000
Z s

0

v00w0 ds

� �0

�
1

bg
ð1� byÞ

2 w00
Z s

0

Z s

1

v00w00 ds ds

� �00
�by½v

0ðv0v00 þ w0w00Þ0�0

�
1

2
v0
Z s

1

d2

dt2

Z s

0

ðv02 þ w02Þ ds

� �
ds

� �0
�F1 cosðO1tÞ½v0ðv02 þ w02Þ�0

þ F2ðsÞ cosðO2tÞ; ð43aÞ

.w þ c ’w þ wiv þ F1 cosðO1tÞw00 ¼ � ð1� byÞ v00
Z s

1

v00w00 ds � v000
Z s

0

w00v0 ds

� �0

�
1

bg
ð1� byÞ

2 v00
Z s

0

Z s

1

v00w00 ds ds

� �00
�½w0ðv0v00 þ w0w00Þ0�0
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�
1

2
w0
Z s

1

d2

dt2

Z s

0

ðv02 þ w02Þ ds

� �
ds

� �0
�F1 cosðO1tÞ½w0ðv02 þ w02Þ�0

þ F3ðsÞ cosðO2tÞ; ð43bÞ

where the dots and primes, respectively, represent partial differentiation with respect to t and x; c
is the damping coefficient, and by is the ratio between the in-plane and out-of-plane principal
flexural stiffnesses, that is, by ¼ DB=DZ:
The boundary conditions are

vð0; tÞ ¼ wð0; tÞ ¼ v0ð0; tÞ ¼ w0ð0; tÞ ¼ 0; ð44aÞ

v00ð1; tÞ ¼ w00ð1; tÞ ¼ v000ð1; tÞ ¼ w000ð1; tÞ ¼ 0: ð44bÞ

In the following analysis, we apply the Galerkin procedure to Eq. (43) to obtain a two-degree-
of-freedom (d.o.f.) non-linear system with parametric and forcing excitations. A planar and a
non-planar flexural mode for the cantilever beam are considered as

vðs; tÞ ¼ yðtÞGðsÞ; ð45aÞ

wðs; tÞ ¼ zðtÞGðsÞ; ð45bÞ

where the function GðsÞ is a mode of the transverse free vibration for linear cantilever beam and is
of the following form:

GðsÞ ¼ coshðrsÞ � cosðrsÞ � ½ðcoshðrÞ þ cosðrÞÞ=ðsinhðrÞ þ sinðrÞÞ�½sinhðrsÞ � sinðrsÞ�: ð46Þ

The linear mode GðsÞ satisfies the differential equation

G0000 � r4G ¼ 0; ð47Þ

and

Gð0Þ ¼ G0ð0Þ ¼ G00ð1Þ ¼ G000ð1Þ ¼ 0: ð48Þ

r is determined by the characteristic equation

coshðrÞ cosðrÞ þ 1 ¼ 0: ð49Þ

Introduce the time variable #t ¼ r2t: For convenience of the following analysis, we drop the hat.
Substituting Eq. (45) into Eq. (43), multiplying Eq. (43) by GðsÞ and integrating to s from 0 to 1, a
2-d.o.f. non-linear system with parametric and forcing excitations is obtained as

.y þ byy ¼ � #c ’y þ 2a1F1 cosðO1tÞy � a2yðy .y þ ’y2 þ z.z þ ’z2Þ � a3byy3

� bya3 þ ð1� byÞa4 �
1

by

ð1� byÞ
2a5

" #
yz2 þ 2a6F1 cosðO1tÞðy3 þ yz2Þ þ f1 cosOt;

ð50aÞ

.z þ z ¼ � #c’z þ 2a1F1 cosðOtÞz � a2zðy .y þ ’y2 þ z.z þ ’z2Þ � a3z3

þ ð1� byÞa4 þ
1

by

ð1� byÞ
2a5 � bya3

" #
zy2 þ 2a6F1 cosðO1tÞðz3 þ zy2Þ þ f2 cosOt; ð50bÞ
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where the dots denote partial differentiation with respect to #t; and

#c ¼
c

r2
; a1 ¼ �

1

r4

Z 1

0

GG00 ds; a2 ¼
Z 1

0

G G0
Z s

1

Z s

0

G02 ds ds

� �0
ds; a3 ¼

1

r4

Z 1

0

G½G0ðG0G00Þ0�0ds;

a4 ¼ �
1

r4

Z 1

0

G G00
Z s

1

G002 ds � G000
Z s

0

G0G00 ds

� �0
ds; a5 ¼ �

1

r4

Z 1

0

G G00
Z s

0

Z s

1

G002 ds ds

� �00
ds;

a6 ¼ �
1

2r4

Z 1

0

GðG03Þ0 ds; f1 ¼
1

r4

Z 1

0

GF2 ds; f2 ¼
1

r4

Z 1

0

GF3 ds: ð51Þ

In this section, we will use the results obtained above to give the normal forms of the averaged
equations for non-planar non-linear oscillations of the cantilever beam under combined
parametric and forcing excitations in two resonant cases. In other paper [27], based on the
normal forms of the averaged equations for non-planar non-linear oscillations of the cantilever
beam under combined parametric and forcing excitations presented here, we will analyze the
global bifurcations and chaotic dynamics for non-planar non-linear oscillations of the cantilever
beam.

4.1. An example for two pairs of pure imaginary eigenvalues

First, principal parametric resonance-1/2 subharmonic resonance and 1:1 internal resonance
are considered. From Eq. (50), it is found that there is o2

2 ¼ 1: Therefore, when the ratio by ¼
o2

1E1; there is the relation of 1:1 internal resonance in Eq. (50). The resonant relations are
expressed as

O2
2 ¼ O2

1; by ¼ o2
1 ¼

1
4
O2

1 þ es1; o2
2 ¼

1
4
O2

1 þ es2; ð52Þ

where s1 and s2 are two detuning parameters.
Using the method of multiple scales, the averaged equations for non-planar non-linear

oscillations of the flexible cantilever beam under combined parametric and forcing excitations are
of the form

’x1 ¼ � 1
2

cx1 � 1
2
ðs1 þ a1F1Þx2 þ 1

8
ð2a2 � 3a3Þx2ðx2

2 þ x2
1 þ x2

4Þ

� 1
8
ð2a2 þ a3Þx2x

2
3 þ ð1

2
a2 � 1

4
a3Þx1x3x4; ð53aÞ

’x2 ¼ � 1
2

cx2 þ 1
2
ðs1 � a1F1Þx1 � 1

8
ð2a2 � 3a3Þx1ðx2

2 þ x2
1 þ x2

3Þ

þ 1
8 ð2a2 þ a3Þx1x

2
4 � ð12 a2 �

1
4 a3Þx2x3x4; ð53bÞ

’x3 ¼ � 1
2

cx3 � 1
2
ðs2 þ a1F1Þx4 þ 1

8
ð2a2 � 3a3Þx4ðx2

4 þ x2
3 þ x2

2Þ

� 1
8
ð2a2 þ a3Þx2

1x4 þ ð1
2
a2 � 1

4
a3Þx1x2x3; ð53cÞ

’x4 ¼ � 1
2

cx4 þ 1
2
ðs2 � a1F1Þx3 � 1

8
ð2a2 � 3a3Þx3ðx2

4 þ x2
3 þ x2

1Þ

þ 1
8
ð2a2 þ a3Þx2

2x3 � ð1
2
a2 � 1

4
a3Þx1x2x4: ð53dÞ

It is noticed that the averaged Eqs. (53) have the Z2"Z2 and D4 symmetries. Therefore, these
symmetries are also held in the normal form. It is known that system (53) has a trivial zero
solution ðx1; x2;x3;x4Þ ¼ ð0; 0; 0; 0Þ at which the Jacobian matrix can be written as
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J ¼ DxX ¼

�1
2

c �1
2
ðs1 þ a1F1Þ 0 0

1
2
ðs1 � a1F1Þ �1

2
c 0 0

0 0 �1
2

c �1
2
ðs2 þ a1F1Þ

0 0 1
2
ðs2 � a1F1Þ �1

2
c

2
6664

3
7775: ð54Þ

The characteristic equation corresponding to the trivial zero solution is

ðl2 þ 2clþ c2 þ s21 � f 2
0 Þðl

2 þ 2clþ c2 þ s22 � f 2
0 Þ ¼ 0; ð55Þ

where f0 ¼ a1F1:
Let

D1 ¼ c2 þ s21 � f 2
0 ; D2 ¼ c2 þ s22 � f 2

0 : ð56Þ

When c ¼ 0; D1 ¼ s21 � f 2
0 > 0 and D2 ¼ s22 � f 2

0 > 0 are simultaneously satisfied, system (53)
has two pairs of pure imaginary eigenvalues

l1;2 ¼ 7i %o1; l3;4 ¼ 7i %o2; ð57Þ

where %o2
1 ¼ s21 � f 2

0 ; %o2
2 ¼ s22 � f 2

0 :
In the case of 1:1 internal resonance, there is the relation %o1E %o2: Considering the excitation

amplitude f0 as a parameter, the averaged equation (53), which does not have the parameters,
becomes

’x1 ¼ � 1
2
s1x2 þ 1

8
ð2a2 � 3a3Þx2ðx2

2 þ x2
1 þ x2

4Þ �
1
8
ð2a2 þ a3Þx2x

2
3 þ

1
2
ða2 � 1

2
a3Þx1x3x4;

’x2 ¼ 1
2
s1x1 � 1

8
ð2a2 � 3a3Þx1ðx2

2 þ x2
1 þ x2

3Þ þ
1
8
ð2a2 þ a3Þx1x

2
4 �

1
2
ða2 � 1

2
a3Þx2x3x4;

’x3 ¼ � 1
2
s2x4 þ 1

8
ð2a2 � 3a3Þx4ðx2

4 þ x2
3 þ x2

2Þ �
1
8
ð2a2 þ a3Þx2

1x4 þ 1
2
ða2 � 1

2
a3Þx1x2x3;

’x4 ¼ 1
2
s2x3 � 1

8
ð2a2 � 3a3Þx3ðx2

4 þ x2
3 þ x2

1Þ þ
1
8
ð2a2 þ a3Þx2

2x3 � 1
2
ða2 � 1

2
a3Þx1x2x4: ð58Þ

System (58) may be rewritten as

’x ¼ Ax þ f 3ðxÞ; ð59Þ

where

A ¼

0 �1
2
s1 0 0

1
2
s1 0 0 0

0 0 0 �1
2
s2

0 0 1
2
s2 0

0
BBB@

1
CCCA: ð60Þ

The adjoint transposed matrix of A is of the form

A� ¼

0 1
2
s1 0 0

�1
2
s1 0 0 0

0 0 0 1
2
s2

0 0 �1
2
s2 0

0
BBB@

1
CCCA: ð61Þ

Executing the Maple program given in Appendix A, the 3 order normal form of the averaged
equation (58) is obtained as

ARTICLE IN PRESS

W. Zhang et al. / Journal of Sound and Vibration 278 (2004) 949–974 963



’y1 ¼ �1
2
s1y2 þ ð1

4
a2 � 3

8
a3Þy2ðy21 þ y2

2Þ �
3
16
a3y2ðy2

3 þ y24Þ; ð62aÞ

’y2 ¼ 1
2
s1y1 � ð1

4
a2 � 3

8
a3Þy1ðy21 þ y2

2Þ þ
3
16
a3y1ðy23 þ y24Þ; ð62bÞ

’y3 ¼ �1
2
s2y4 þ ð 3

16
a2 � 9

32
a3Þy4ðy2

3 þ y24Þ �
1
4
a3y4ðy2

1 þ y22Þ; ð62cÞ

’y4 ¼ 1
2
s2y3 � ð 3

16
a2 � 9

32
a3Þy3ðy23 þ y2

4Þ þ
1
4
a3y3ðy21 þ y2

2Þ: ð62dÞ

The non-linear transformation used in the above computing procedure is of the form

x1 ¼ y1 þ
1

2

s21s2ð2a2 � 3a3Þ
9s41 � 10s22s

2
1 þ s42

y21y3 þ
1

2

s21s2ð2a2 þ a3Þ
9s41 � 10s22s

2
1 þ s42

y2
1y4

þ
1

4

s2ð2a2 � 3a3Þð7s21 � s22Þ
9s41 � 10s22s

2
1 þ s42

y22y3 þ
1

4

ð7s21 � s22Þð2a2 þ a3Þ
9s41 � 10s22s

2
1 þ s42

y22y4

þ
ð�4s1a2 � 3s2a3Þð7s21 � s22Þ

8s1s2
y1y

2
3 þ

ð2s1s2a3 � 2s21a2 þ 3s22a3 � 3s21a3Þ
8s1ðs21 � s22Þ

y1y
2
4

þ
s1ð6s21a2 þ 3s21a3 � s22a3 � 2s22a2Þ

2ð9s41 � 10s22s
2
1 þ s42Þ

y1y2y3 �
s1ð3s21 � s22Þð2a2 � 3a3Þ
2ð9s41 � 10s22s

2
1 þ s42Þ

y1y2y4

þ
1

4

s1ðs1a2 � s2a3Þ
s2ðs21 � s22Þ

y2y3y4; ð63aÞ

x2 ¼ y2 �
3

2

s31ð2a2 þ a3Þ
9s41 � 10s22s

2
1 þ s42

y2
1y3 þ

3

2

s31ð2a2 � 3a3Þ
9s41 � 10s22s

2
1 þ s42

y2
1y4

�
1

4

s1ð2a2 þ a3Þð3s21 � s22Þ
9s41 � 10s22s

2
1 þ s42

y22y3 þ
1

4

s1ð3s21 � s22Þð2a2 � 3a3Þ
9s41 � 10s22s

2
1 þ s42

y2
2y4

þ
1

4

ðs22a3 � 2s21a2 þ 2s22a2 � s1s2a2Þ
s2ðs21 � s22Þ

y2y
2
3 �

s21s2ð2a2 � 3a3Þ
9s41 � 10s22s

2
1 þ s42

y1y2y3

�
s21s2ð2a2 þ a3Þ

9s41 � 10s22s
2
1 þ s42

y1y2y4 �
1

4

ðs1s2a3 þ s21a2 � 2s22a2Þ
s2ðs21 � s22Þ

y1y3y4; ð63bÞ

x3 ¼ y3 þ
ð�2a2 þ 3a3Þ

8s2
y3
3 þ

ð2a2 � a3Þ
4ðs1 � s2Þ

y2
2y3

þ
ð�2a2 þ 3a3Þ

16s2
y3y

2
4 �

ð2a2 � a3Þ
4ðs1 � s2Þ

y1y2y4; ð63cÞ

x4 ¼ y4 þ
1

4

ð2a2 � a3Þ
s1 � s2

y2
1y4 þ

1

16

3ð�2a2 þ 3a3Þ
s2

y2
3y4 �

1

4

ð2a2 � a3Þ
s1 � s2

y1y2y3: ð63dÞ

It is observed that normal form (62) is simpler than averaged equation (53). However, normal
form (62) is topologically equivalent to averaged equation (53).
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4.2. An example for a double zero and a pair of pure imaginary eigenvalues

In this section, we investigate the case of the ratio by ¼ o2
1E1=4: In this case, there is the

relation of 1:2 internal resonance for Eq. (50). In addition, principal parametric resonance-1/2
subharmonic resonance for the first mode and fundamental parametric resonance–primary
resonance for the second mode are considered. The resonant relations are represented as

O2
2 ¼ O2

1; o2
1 ¼ by ¼ 1

4
O2

1 þ es1; 1 ¼ o2
2 ¼ O2

1 þ es2; ð64Þ

where s1 and s2 are two detuning parameters.
Using the method of multiple scales, the averaged equations for non-planar non-linear

oscillations of the flexible cantilever beam under combined parametric and forcing excitations are
of the form

’x1 ¼ �1
2

cx1 � 1
2
ðs1 þ a1F1Þx2 þ 1

32
ð2a2 � 3a3Þx2ðx2

2 þ x2
1Þ þ b1x2ðx2

3 þ x2
4Þ; ð65aÞ

’x2 ¼ �1
2

cx2 þ 1
2
ðs1 � a1F1Þx1 � 1

32
ð2a2 � 3a3Þx1ðx2

1 þ x2
2Þ � b1x1ðx2

3 þ x2
4Þ; ð65bÞ

’x3 ¼ �1
2

cx3 � 1
2
s2x4 þ ð1

2
a2 � 3a3Þx4ðx2

4 þ x2
3Þ þ 2b2x4ðx2

2 þ x2
1Þ; ð65cÞ

’x4 ¼ �f2 � 1
2

cx4 þ 1
2
s2x3 � ð1

2
a2 � 3a3Þx3ðx2

3 þ x2
4Þ � 2b2x3ðx2

1 þ x2
2Þ; ð65dÞ

where b1 ¼ �3
4
a4 þ 9

4
a5 � 1

4
a3; b2 ¼

3
4
a4 þ 9

4
a5 � a3:

Take into account the exciting amplitude f2 as a perturbation parameter. Amplitude f2 can be
considered as an unfolding parameter when the global bifurcations are investigated. Obviously,
when we do not consider the perturbation parameter, Eq. (65) becomes

’x1 ¼ �1
2

cx1 � 1
2
ðs1 þ a1F1Þx2 þ 1

32
ð2a2 � 3a3Þx2ðx2

2 þ x2
1Þ þ b1x2ðx2

3 þ x2
4Þ; ð66aÞ

’x2 ¼ �1
2

cx2 þ 1
2
ðs1 � a1F1Þx1 � 1

32
ð2a2 � 3a3Þx1ðx2

1 þ x2
2Þ � b1x1ðx2

3 þ x2
4Þ; ð66bÞ

’x3 ¼ �1
2

cx3 � 1
2
s2x4 þ ð1

2
a2 � 3a3Þx4ðx2

4 þ x2
3Þ þ 2b2x4ðx2

2 þ x2
1Þ; ð66cÞ

’x4 ¼ �1
2

cx4 þ 1
2
s2x3 � ð1

2
a2 � 3a3Þx3ðx2

3 þ x2
4Þ � 2b2x3ðx2

1 þ x2
2Þ: ð66dÞ

Eq. (66) has a trivial zero solution ðx1; x2;x3; x4Þ ¼ ð0; 0; 0; 0Þ at which the Jacobian matrix can
be represented as

J ¼ DxX ¼

�1
2

c �1
2
ðs1 þ f0Þ 0 0

1
2
ðs1 � f0Þ �1

2
c 0 0

0 0 �1
2

c �1
2
s2

0 0 1
2
s2 �1

2
c

2
6664

3
7775; ð67Þ

where f0 ¼ a1F1:
The characteristic equation corresponding to the trivial zero solution is of the form

ðl2 þ 2clþ c2 þ s21 � f 2
0 Þðl

2 þ 2clþ c2 þ s22Þ ¼ 0: ð68Þ

Let

D1 ¼ c2 þ s21 � f 2
0 ; D2 ¼ c2 þ s22: ð69Þ
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When c ¼ 0; D1 ¼ s21 � f 2
0 ¼ 0 and D2 ¼ s22 > 0 are simultaneously satisfied, system (66) has a

double zero and a pair of pure imaginary eigenvalues

l1;2 ¼ 0; l3;4 ¼ 7i %o2; ð70Þ

where %o2
2 ¼ s22:

Letting s1 ¼ f0 þ 2 %s1 as well as setting f0 ¼ �1; the averaged equation (66) without parameter
f2 is changed to

’x1 ¼ x2 þ 1
16
a2ðx3

2 þ x2
1x2Þ � 3

32
a3ðx3

2 þ x2
1x2Þ þ b1ðx2x

2
3 þ x2x

2
4Þ; ð71aÞ

’x2 ¼ � 1
16
a2ðx3

1 þ x1x
2
2Þ þ

3
32
a3ðx3

1 þ x1x
2
2Þ � b1ðx1x

2
3 þ x1x

2
4Þ; ð71bÞ

’x3 ¼ �1
2
s2x4 þ 1

2
a2ðx3

4 þ x2
3x4Þ � 3a3ðx3

4 þ x2
3x4Þ þ 2b2ðx

2
2x4 þ x2

1x4Þ; ð71cÞ

’x4 ¼ 1
2
s2x3 � 1

2
a2ðx3

3 þ x3x
2
4Þ þ 3a3ðx3

3 þ x3x
2
4Þ � 2b2ðx3x

2
1 þ x3x

2
2Þ: ð71dÞ

In the case considered here, we have

A ¼

0 1 0 0

0 0 0 0

0 0 0 �1
2
s2

0 0 1
2
s2 0

0
BBB@

1
CCCA; ð72Þ

and

A� ¼

0 0 0 0

1 0 0 0

0 0 0 1
2
s2

0 0 �1
2
s2 0

0
BBB@

1
CCCA: ð73Þ

Executing the Maple program given in Appendix A, the 3 order normal form of system (71) is
obtained as

’y1 ¼ y2; ð74aÞ

’y2 ¼ ð� 1
16
a2 þ 1

32
a3Þy31 � b1y1y

2
3 � b1y1y

2
4; ð74bÞ

’y3 ¼ �1
2
s2y4 þ ð1

2
a2 � 3a3Þy3

4 þ 2b2y
2
1y4 þ ð1

2
a2 � 3a3Þy2

3y4; ð74cÞ

’y4 ¼ 1
2
s2y3 þ ð�1

2
a2 þ 3a3Þy33 � 2b2y

2
1y3 þ ð�1

2
a2 þ 3a3Þy3y24: ð74dÞ

The non-linear transformation used here is given as follows:

x1 ¼ y1 þ ð 1
96
a2 � 1

64
a3Þy3

1 þ ð 1
16
a2 � 1

32
a3Þy1y22 �

2b1
s2

y2y
2
3 þ

2b1
s2

y2y
2
4; ð75aÞ

x2 ¼ y2 þ ð� 1
32
a2 þ 3

64
a3Þy1y2

2; ð75bÞ

x3 ¼ y3 þ 2b2y1y2y4; ð75cÞ
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x4 ¼ y4 � 2b2y1y2y3: ð75dÞ

The results obtained above completely agree with that presented by using the method in paper [9].

5. Conclusions

Comparing the method developed here with other methods given in Refs. [9,17,25], it is observed
that we may respectively, obtain the normal forms, the coefficients of the normal forms and the
associated near identity non-linear transformations for three cases by using a same main Maple
symbolic program. Therefore, it is more convenient to utilize the approach developed here to compute
the normal form of the averaged equations for different resonant cases. It is also found that in
Refs. [9,17] the researchers only investigate the cases in which the center manifold is four-dimensional.
It is known that in paper [25] Leung and Zhang only computed the normal forms of non-linear systems
with two-, three- and four-dimensional center manifolds by using the Mathematica language.
A new and efficient method of computing the normal forms for high dimensional non-linear systems

is developed based on the adjoint operator method. The newly developed method has the advantage
that it is not necessary to find the characteristic system of the sets of partial differential equations, the
solutions of which lead to the normal forms. Neither is it necessary to obtain the independent first
integrals of the characteristic system. Employing the new method, 3 order polynomial solutions of the
sets of partial differential equations are conveniently obtained by using Maple symbolic program.
Furthermore, the polynomial solutions can be directly introduced to determine the basis of a vertical
complementary subspace. Finally, the method is applied to the averaged equations for non-planar non-
linear oscillations of the cantilever beam in two different resonant cases. The normal forms of the
averaged equations obtained in this paper can be used to investigate the global bifurcations and chaotic
dynamics in non-planar non-linear oscillations of the cantilever beam under combined parametric and
forcing excitations. In the next paper [27], the global bifurcations and chaotic dynamics for non-planar
non-linear oscillations of the cantilever beam will be investigated.
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Appendix A. Maple programs of computing normal forms

In the following, the Maple source codes for computing the normal forms are presented. Using
the Maple programs, we are able to obtain 3 order normal forms of four-dimensional non-linear
systems and associated near identity non-linear transformation.
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1. The main Maple symbolic program is as follows:
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